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Abstract. We discuss the multi-exponential nuclear magnetization recovery which occurs in
spin–lattice relaxation when NMR lines are split by quadrupole interaction. We treat the general
situation in which both magnetic and quadrupolar fluctuations are present and consider three
cases differing in their initial conditions: (1) a short radio-frequency pulse is applied selectively
to one of the transitions; (2) all lines are saturated at once; (3) a selected line is saturated by
continuous waves or by means of a long comb of pulses. Exact solutions are presented for
spin I = 1 andI = 3/2, whereas for spinI = 5/2, exact solutions are given for special cases
and approximate solutions for the general case. The spinI = 7/2 case is treated for magnetic
fluctuations only. The detailed analysis reveals that the form of the recovery law is surprisingly
insensitive to an additional relaxation channel, e.g. quadrupolar fluctuations in the presence of
predominantly magnetic fluctuations or vice versa.

1. Introduction

The work presented in this paper has been motivated by the feature of condensed
matter NMR experiments that quite often both magnetic and quadrupolar time-dependent
interactions are present causing spin–lattice relaxation. The question arises of whether it
is possible to deduce, directly from the experiment, the admixture of a weak contribution,
for instance due to quadrupolar interaction, to the overall relaxation. In other words, how
sensitive is the form of the magnetization recovery law to the two types of interaction?

If the nucleus under consideration has two magnetic isotopes as in the case of copper
(63Cu and65Cu), the admixture can be estimated from the ratio of the relaxation times,T1.
However, if the two contributions have about the same strength and the relaxation law is
multi-exponential, one may question whether the ratioT1 obtained is accurate. Furthermore,
is the approximation using asingle relaxation time meaningful or is it more appropriate to
describe the system usingseparateprobabilities for the transitions induced by magnetic and
quadrupolar fluctuations?

The literature contains mainly calculations of multi-exponential magnetization recovery
laws for the case of eitherpurely magnetic orpurely quadrupolar fluctuations, with Andrew
and Tunstall [1] being the first to treat the case of a static quadrupolar perturbed Zeeman
Hamiltonian (spinI = 3/2, 5/2). These calculations were extended to higher spins [2–4]
and to the case of a static quadrupolar Hamiltonian [5–8]. MacLaughlinet al [9] treated
the case of a static quadrupolar Hamiltonian (η = 0) with mixed fluctuations in a kind of
perturbation expansion, whereas Rega [10] presented, for this case, an exact solution in the
limit of time approaching zero.
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Since the emergence of high-temperature superconductors, extensive studies have been
concerned with the copper relaxation which is dominated by magnetic interaction and in
which, in some cases, the presence of a (small) quadrupolar contribution is suspected [11]. In
particular, special consideration has been devoted to copper NMR in small external magnetic
fields, for which the static Hamiltonian is the sum of a Zeeman term and a quadrupolar term
which are of comparable magnitude. This case, in the limit of purely magnetic fluctuations,
has been treated by Takigawaet al [12] and Horvatíc [13].

In this publication we will present calculations for a static quadrupolar perturbed Zeeman
Hamiltonian in the presence of mixed magnetic and quadrupolar fluctuations. These were
carried out for three cases differing in their initial conditions and for spinsI = 1, I = 3/2
and I = 5/2; spin I = 7/2 is treated for magnetic fluctuations only. Most of the
results are exact; approximate solutions were found for the general case ofI = 5/2.
We analyse the whole parameter space constructed from the probabilities for transitions
induced by magnetic and quadrupolar fluctuations. This is a necessity when dealing with
single crystals or partially oriented powders, since in these cases the different contributions
of the fluctuations depend on the angle that they form with the external magnetic field,
B0; i.e. by changing the direction ofB0, one samples another part of the parameter space.
We also investigated how sensitive the form of the recovery law for the magnetization
is to additional fluctuations (e.g. additional quadrupolar fluctuations in the presence of
predominantly magnetic fluctuations), in order to determine whether it is possible to extract
directly from the recovery law the magnetic and quadrupolar contributions.

2. Basic relations and the master equation

Our starting point is the following Hamiltonian:

Htot = H0+H1(t)

whereH0 = HZ + HQ describes the time-independent (or ‘static’) Hamiltonian which
comprises the Zeeman interaction,HZ, with the external magnetic field and the quadrupolar
interaction,HQ, with the electric field gradient (EFG) tensor.H1(t) takes into account
fluctuations; it is the sum of a magnetic and a quadrupolar contribution:

H1(t) = Hmag(t)+Hquad(t) (1)

where

Hmag(t) = −h̄γnI · h(t)

Hquad(t) = eQ

4I (2I − 1)

2∑
k=−2

Vk(t)T2k(I).

Here,I is the nuclear spin operator,h(t) is a fluctuating magnetic field,Vk(t) is a component
of the fluctuating EFG andT2k(I) are spherical tensor operators [14, 15].

In equation (1), nuclear spin-exchange terms are omitted. If the quadrupolar splitting,
due toHQ, is large compared to the nuclear spin-exchange coupling, the time evolution
of the spin–lattice relaxation proceeds by means of direct coupling to the lattice. Cases in
which the nuclear spin-exchange terms are important are discussed in references [1, 16].

The relaxation of the spin system towards its thermodynamic equilibrium is described
by the so-called master equation

d

dt
P (t) =W{P (t)− P (0)}. (2)
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Here, P (t) is the population vector of the different energy levels withP (0) being the
equilibrium value. The relaxation matrix,W, is, in second-order perturbation theory, given
by [14]

Wαβ
α 6=β= 1

h̄2

∫ ∞
−∞

dτ exp(iωαβτ)〈α|H1(τ )|β〉〈β|H1(0)|α〉

Wαα = −
∑
β 6=α

Wαβ

where |α〉, |β〉 are eigenstates ofH0 andωαβ = (〈α|H0|α〉 − 〈β|H0|β〉)/h̄ are transition
frequencies. Ensemble averages are denoted by〈· · ·〉.

As long as the eigenfunctions ofH0 can be approximated by the eigenfunctions of a
Zeeman Hamiltonian, i.e.HZ � HQ, the relevant relaxation matrix terms for magnetic and
quadrupolar relaxation are given as follows:

W
mag
αβ = J (ωαβ){|〈α|I+|β〉|2+ |〈α|I−|β〉|2}

W
quad,1
αβ = J (1)(ωαβ){|〈α|I+Iz + IzI+|β〉|2+ |〈α|I−Iz + IzI−|β〉|2}

W
quad,2
αβ = J (2)(ωαβ){|〈α|(I+)2|β〉|2+ |〈α|(I−)2|β〉|2}.

The Js are the spectral densities of the fluctuating fields:

J (ω) = γ 2
n

2

∫ ∞
−∞

dτ exp(iωτ)[h+, h−]

J (1,2)(ω) =
(
eQ

h̄

)2 ∫ ∞
−∞

dτ exp(iωτ)[V+1,2, V−1,2]

with

[A,B] = (1/2)(A(τ)B(0)+ B(τ)A(0))
andh± = hx ± ihy .

If HZ andHQ are of similar magnitude, the situation is more complicated. The case
of purely magnetic fluctuations, for ‖HZ‖ ≈ ‖HQ‖, has been treated by various authors
[12, 13].

In this paper we will deal with the case in whichHZ � HQ and make the additional
assumption that the spectral densities can be approximated by a single value. This means
that the inverse of the correlation time,τ−1

c , of the fluctuating fields is large compared to
ωαβ , that isωαβτc � 1. One then obtains

J (ω) ' J (0) =: W

J(1,2)(ω) ' J (1,2)(0) =: W1,2

and the resulting transition probabilities become

W
mag
m→m−1 = W(I +m)(I −m+ 1) (3)

W
quad,1
m→m−1 = W1

(2m− 1)2(I −m+ 1)(I +m)
2I (2I − 1)2

(4)

W
quad,2
m→m−2 = W2

(I +m)(I +m− 1)(I −m+ 1)(I −m+ 2)

2I (2I − 1)2
. (5)

Our calculations were performed in the high-temperature limit, i.e. for ¯hωαβ � kBT , so
there is a further simplification:Wα→β ' Wβ→α. Figure 1 shows sketches of the various
transition probabilities which are possible for a spin-5/2 system. We assume the spacings
between the levels to be sufficiently unequal to suppress spin-exchange transitions.
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Figure 1. Top: transitions between the spin energy levels effected by magnetic and quadrupolar
spin–lattice relaxation processes forI = 5/2. Bottom: population differences for thecase I
experiment; see the text.

To solve the master equation, equation (2), it is convenient to introduce some
abbreviations. The population of levelm is Pm and we define the difference in population
between adjacent levels byPm+1/2 = Pm+1 − Pm; the equilibrium value of this difference
is n0 = Pm+1(0)− Pm(0). The deviation of the population difference from its equilibrium
value is denoted byNm+1/2 = Pm+1/2− n0; the valuesNm+1/2 form the vectorN .

Given the transition probabilities shown in figure 1, we can write down, in compact
form, the following ‘reduced’ master equation forN :

d

dt
N = RN (6)

whereR is the reduced relaxation coefficient matrix. The solution of equation (6) is of the
form

Nj(t) =
∑
i

[
(ET)−1N (0)

]
i
Eij exp(tλi) (7)

whereλi andE are the eigenvalues and the eigenvector matrix ofR, respectively.N (0) is
the vector describing the initial condition of the spin system into which it has been brought
during a certain preparation period.

Once theNj(t) are known, the time-dependent magnetization,M(t), is obtained:

M(t) = M(∞)
[

1−
∑
i

ai exp(tλi)

]
(8)

and theai are given by

ai = − 1

n0

[
(ET)−1N (0)

]
j
Eji (9)
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where the indexj refers to the corresponding line which will be observed, e.g. the central
transition. Usually the irradiated line and the observed line are the same.

In the following sections we will consider three different cases of initial conditions.

Case I: with the system initially in equilibrium, a short radio-frequency (RF) pulse is
applied selectively to one of the transitions (the central line or one satellite). This type of
experiment is used in an inversion–recovery pulse sequence or for the selective saturation of
a single line. Figure 1 illustrates the population difference before (on the left) and just after
application (centre) of theθ = π pulse to the central line, whereθ is the angle betweenB0

and 〈M 〉. On the right are shown thedeviationsof the population differences from their
equilibrium values. Hence, the elements of the initial condition vector,N (0), are given as
follows: −2n0 for the inverted transition andn0 for the others; e.g. for the inversion of the
I = 3/2 central line we haveN (0) = n0[1,−2, 1]. For this case

∑
i ai = 2, whereas in

the general case of aθ -pulse,
∑

i ai = 1− cos(θ).
Case II: with the system initially in equilibrium,all of the lines are saturated at once.

These conditions remain the same if one suddenly applies an external magnetic field to a
system which has achieved thermal equilibrium in zero magnetic field. In both cases, the
initial vector is simplyN (0) = n0[−1, . . . ,−1].

Case III: we assume that a selected line (q) is saturated, for instance by a long comb of
pulses such that the comb lengthτtot� 1/min(W,W1,W2) and the pulse spacingτ within
the comb satisfies the condition 5T2 < τ � 1/max(W,W1,W2). In contrast to the previous
cases, the initial condition is not obtained readily; instead it must be calculated, since the
stimulating RF field causes transitions, with transition ratePrf , between the levelsq + 1/2
andq − 1/2. Thus, for calculating the initial condition vector, the rate equation (6) must
be extended in the following way:

d

dt
N = (R+ S)N + n0P .

S is a square matrix with all elements zero exceptSq±1,q = Prf , Sq,q = −2Prf . P is a
vector with all elements zero exceptPq±1 = Prf , Pq = −2Prf . For dynamic equilibrium,
when dN/dt = 0, we have

N (∞) = −n0(R+ S)−1P .

N (∞), which becomes the initial condition vectorN (0) for solving equation (6), is
calculated under the assumption thatPrf � max(W,W1,W2).

We close this section by listing in table 1, to the best of our knowledge, all of the
references to previous calculations of spin–lattice relaxation rates based on the above
formalism. The references are summarized for given values ofH0 andH1 and various
spin values.

3. Exact solutions forI = 1

In this section we will present exact solutions of the reduced master equation (6) for the case
in which the eigenfunctions of the HamiltonianH0 can be approximated by the Zeeman
eigenfunctions andH1 contains both magnetic and quadrupolar interactions.

The rate matrixR is obtained from equations (3)–(6):

R = Rmag+ Rquad

Rmag= W
[−4 2

2 −4

]
Rquad=

[−2(W1+W2) W1− 2W2

W1− 2W2 −2(W1+W2)

]
.
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Table 1. This table contains, as far as we are aware, all of the work on multi-exponential
recovery laws due to spin–lattice relaxation carried out so far. The second column indicates
whether the unperturbed Hamiltonian is a Zeeman HamiltonianHZ or a quadrupole Hamiltonian
HQ or the sum of these. The third column indicates the kind of fluctuation treated and the last
column the spin for which the calculation was carried out.

Reference H0 H1 I

[1] HZ Hmag/Hquad 3/2, 5/2
[2] HZ Hquad 7/2, 9/2
[5] HQ, η = 0 Hquad 5/2
[3] HZ Hmag 5/2, 7/2
[9] HQ, η = 0 Hmag+Hquad 3/2, 5/2
[4] HZ Hquad 3/2–9/2
[6] HQ Hquad 5/2–9/2
[7] HQ Hmag 3/2, 5/2
[10] HQ Hmag+Hquad, M(t)|t→0 7/2
[12] HZ +HQ Hmag 3/2
[13] HZ +HQ Hmag 3/2
[8] HQ Hquad 7/2

Table 2. Coefficientsai of the magnetization recovery law for spinI = 1, for different cases
(see the text). For case III,α = W2/(2W +W1 + 2W2).

Case I Case II Case III

N(0)/n0 [1,−2] [−1,−1] [2α,−1]
a1 3/2 0 1/2+ α
a2 1/2 1 1/2− α

The eigenvaluesλ and the eigenvector matrixE of R are, respectively,

λ =
[ −3(2W +W1)

−(2W +W1+ 4W2)

]
E =

[−1 1
1 1

]
.

We now calculate the magnetization recovery laws for the three cases mentioned above.
For spinI = 1, in contrast to the other cases, there is only one recovery law for a specified
initial condition. Theai-coefficients of equation (9) are given in table 2.

Figure 2 illustrates the results for two situations: (a) vanishing quadrupolar fluctuations,
i.e. W1 = W2 = 0, and (b) strong quadrupolar fluctuations, namelyW1 = W, W2 = W/2.
We note that even a strong additional quadrupolar relaxation (situation (b)) does not change
the form of the curve very much; that means that it is still possible to make all of the
curves nearly coincide if a normalized abscissa is used. This is true over a surprisingly
large proportion of the parameter spaceW,W1,W2. The reason for this behaviour is that
the eigenvaluesλi are only weak and linear functions ofW,W1,W2. We will discuss this
in section 7.

4. Exact solutions forI = 3/2

Like in the case forI = 1, we will present exact solutions of the reduced master equation
and will consider again the three different cases discussed in the previous section.
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Figure 2. Recovery laws for the normalized magnetization,m = M(t)/M(∞), for an I = 1
(left-hand graph) and anI = 5/2 system [17]. The maximum of the function 1− m is
normalized to 1. Curves labelled ‘a’ refer toW1 = W2 = 0, while the ‘b’ curves refer to
W1 = W, W2 = W/2.

The two terms of the reduced relaxation matrix,R, are

Rmag= W
[−6 4 0

3 −8 3
0 4 −6

]

Rquad=
[−(2W1+W2) 0 W2

W1−W2 −2W2 W1−W2

W2 0 −(2W1+W2)

]
.

The eigenvalues and the eigenvector matrix ofR are, respectively

λ =
[−(7W +W1+W2)+ β
−(6W + 2(W1+W2))

−(7W +W1+W2)− β

]
E =

[ 1 (λ1+ 2W1+ 6W)/(4W) 1
1 0 −1
1 (λ3+ 2W1+ 6W)/(4W) 1

]
.

with

β =
√
(W1−W2)2+ 6W(W1−W2)+ 25W 2.

We now calculate the magnetization recovery laws for the three cases.

4.1. Case I

The initial condition vector for inversion of the central transition isN (0) = n0[1,−2, 1].
This yields theai-coefficients:

a1c = −1

8Wβ
(7W + (W1−W2)− β)(W − (W1−W2)− β)

a2c = 0
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a3c = 1

8Wβ
(7W + (W1−W2)+ β)(W − (W1−W2)+ β).

The corresponding values for the satellites are

a1s = −1

2β
(3W + (W1−W2)− β)

a2s = 1

a3s = 1

2β
(3W + (W1−W2)+ β).

The limiting values (e.g. forW1,2→ 0) of theai agree with the literature values for all
situations.

4.2. Case II

The initial vector is nowN (0) = n0[−1,−1,−1] and theai-coefficients become, for the
central transition,

a1c = −1

8Wβ
(W − (W1−W2)− β)(5W − (W1−W2)+ β)

a2c = 0

a3c = 1

8Wβ
(W − (W1−W2)+ β)(5W − (W1−W2)− β)

and for the satellites

a1s = 1

2β
(5W − (W1−W2)+ β)

a2s = 0

a3s = −1

2β
(5W − (W1−W2)− β).

The limiting values (e.g. forW1,2→ 0) of theai agree with the literature values for all
situations.

4.3. Case III

If the central line is irradiated, we haveN (0) = n0[µ1,−1, µ1], with µ1 = W2/(3W+W2),
and the coefficientsai become

a1c = −1

8Wβ
((4− µ1)W + µ1(W1−W2)− µ1β)(W −W1+W2− β)

a2c = 0

a3c = 1

8Wβ
((4− µ1)W + µ1(W1−W2)+ µ1β)(W −W1+W2+ β).

For the satellites, the initial condition vector isN (0) = n0[−1, µ2, µ3], where µ2 =
W2(3W + 2W2)/(12W 2+ 14WW2+ 3W 2

2 ) andµ3 = −W 2
2/(12W 2+ 14WW2+ 3W 2

2 ), and
the coefficients are

a1s = 1

4β
((1− 8µ2− µ3)W − (1− µ3)(W1−W2)+ (1− µ3)β)

a2s = 1

2
(1+ µ3)

a3s = −1

4β
((1− 8µ2− µ3)W − (1− µ3)(W1−W2)− (1− µ3)β).
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The remarks made concerning the case ofI = 1 apply also to spin 3/2 and will be
discussed in section 7.

5. Solutions for spinI = 5/2

The two terms of the reduced relaxation matrix,R, are

Rmag= W


−10 8 0 0 0

5 −16 9 0 0
0 8 −18 8 0
0 0 9 −16 5
0 0 0 8 −10


Rquad

=


− 1

2(4W1+W2)
2
5(W1+W2)

9
10W2 0 0

1
2(2W1−W2) − 1

5(4W1+ 7W2) 0 9
10W2 0

1
2W2

2
5(W1−W2) − 9

5W2
2
5(W1−W2)

1
2W2

0 9
10W2 0 − 1

5(4W1+ 7W2)
1
2(2W1−W2)

0 0 9
10W2

2
5(W1+W2) − 1

2(4W1+W2)

 .
Since the exact solution of the reduced master equation, equation (6), is too complex to

provide physical insight, we expanded the eigenvalues as well as the eigenvectors around
(W1,W2) = (0, 0) and used the exact form forλ2, λ4 only. All of the functions involved
vary weakly in the subspace(W1,W2) around(0, 0); hence the solution is accurate within
a few per cent as long asW1,W2 6 3W . However, for the case in whichW1 = W2, the
eigenvalues and eigenvectors given below reduce to the exact solution.

Within this approximation, the eigenvalues are given by

λ =

−
(

2W + 0.031 43W1+ 0.768 57W2+ 0.003 889
(W 2

1 +W 2
2 )

W
− 0.007 778

W1W2

W

)
−(13W + (7/5)(W1+W2)− γ )

−
(

12W + 1.84W1+ 1.46W2+ 0.039 14
(W 2

1 +W 2
2 )

W
− 0.078 28

W1W2

W

)
−(13W + (7/5)(W1+W2)+ γ )

−
(

30W + 0.928 57W1+ 0.571 43W2+ 0.035 249
(W 2

1 +W 2
2 )

W
− 0.070 498

W1W2

W

)


with

γ = {49W 2+ (19/25)W 2
1 + (61/100)W 2

2 − (22/25)W1W2

+ (32/5)WW1+ (17/5)WW2}1/2.
The corresponding approximated eigenvector matrix is

E =



1 1+ 10
511 1+ 100

3581 1+ 10
511 1

−1+ 1
81 − 1

2 − 5
1121 − 1

160(W2/W)1
1
2 + 3

281 1

1 − 1
4 + 5

1541 − 2
3 − 4

591 − 1
4 + 5

1541 1

−1− 1
201

5
4 − 1

561 − 1
160(W2/W)1 − 5

4 + 9
1121 1

1 − 5
2 + 500

19311
10
3 − 100

2091 − 5
2 + 500

19311 1


with 1 = (W1−W2)/W . The coefficientsai are summarized in table 3.
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Table 3. Mixed relaxation forI = 5/2. The coefficients are valid in the region where
W1,W2 6 3W . (We have used the notationX = 1+ µ12/ζ3 to help with the layout.)

Case I

Central transition First satellite Second satellite

a1 2/35+ 0.007 5741 2/35+ 0.001 581 2/35+ 0.011 371
a2 0 3/28+ 0.026 1021 3/7− 0.079 2641
a3 16/45+ 0.062 18381 1/20− 0.026 9341 4/5− 0.022 8741
a4 0 25/28− 0.010 4781 4/7+ 0.066 7641
a5 100/63− 0.069 75861 25/28+ 0.009 7281 1/7+ 0.024 0041

Case II

Central transition First satellite Second satellite

a1 1+ 0.11791 1+ 0.03461 1− 0.16151
a2 0 0 0
a3 −0.10931 −0.04101 0.16401
a4 0 0 0
a5 −0.00851 0.00641 −0.00261

We will list below the initial condition vectors,N (0), together with their components,
for the cases in which the central line, the inner satellite and the outer satellite are saturated
(case III).

(a) Central line

N (0) = n0

[
µ4

ζ1
,
µ5

ζ1
,−1,

µ5

ζ1
,
µ4

ζ1

]
µ4 = −9W 2

2

µ5 = 45W2(10W + 2W1+W2)

ζ1 = 800W 2+ 200WW1+ 8W 2
1 + 220WW2+ 32W1W2+ 9W 2

2 .

(b) Inner satellite

N (0) = n0

[
µ6

ζ2
,−1,

µ6

ζ2
,
µ7

ζ2
,
µ8

ζ2

]
µ6 = W2(8000W 3+ 2000W 2W1+ 80WW 2

1 + 3800W 2W2+ 720WW1W2+ 16W 2
1W2

+ 440WW 2
2 + 46W1W

2
2 + 9W 3

2 )

µ7 = −9W 2
2 (10W + 2W1+W2)

2

µ8 = 9W 3
2 (10W + 2W1+W2)

ζ2 = 80 000W 4+ 36 000W 3W1+ 4800W 2W 2
1 + 160WW 3

1 + 8200W 2W 2
2 + 46 000W 3W2

+ 16 800W 2W1W2+ 1680WW 2
1W2+ 32W 3

1W2+ 2060WW1W
2
2

+ 108W 2
1W

2
2 + 530WW 3

2 + 64W1W
3
2 + 9W 4

2 .

(c) Outer satellite

N (0) = n0

[
−1,

µ9

ζ3
,
µ10

ζ3
,
µ11

ζ3
,
µ12

ζ3

]
µ9 = W2(8000W 3+ 2000W 2W1+ 80WW 2

1 + 3800W 2W2+ 720WW1W2

+ 16W 2
1W2+ 440WW 2

2 + 46W1W
2
2 + 9W 3

2 )
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Table 3. (Continued)

Case III

Central transition

a1
1

35

(
9− 10

µ4
ζ1
− 16

µ5
ζ1

)
+1

(
0.029 94− 0.035 18

µ4
ζ1
− 0.052 30

µ5
ζ1

)
a2 0

a3
4

45

(
3+ 5

µ4
ζ1
− 2

µ5
ζ1

)
+1

(
0.005 73+ 0.064 35

µ4
ζ1
+ 0.050 72

µ5
ζ1

)
a4 0

a5
10
63

(
3− µ4

ζ1
+ 4

µ5
ζ1

)
−1

(
0.035 67+ 0.028 73

µ4
ζ1
− 0.001 58

µ5
ζ1

)
First satellite

a1
1

35

(
8− 14

µ6
ζ2
− 8

µ7
ζ2
− 5

µ8
ζ2

)
+

1

(
0.014 27− 0.026 95

µ6
ζ2
+ 0.000 02

µ7
ζ2
+ 0.006 58

µ8
ζ2
+ 0.008

(
µ6
ζ2
− µ8
ζ2

)
W2

W

)
a2

1
28

(
4− 5

µ6
ζ2
+ 4

µ7
ζ2
+ 5

µ8
ζ2

)
+

1

(
0.0195− 0.012 89

µ6
ζ2
+ 0.0195

µ7
ζ2
+ 0.012 89

µ8
ζ2

)
a3

1
60

(
2− µ6

ζ2
− 2

µ7
ζ2
+ 5

µ8
ζ2

)
−

1

(
0.021 396− 0.015 86

µ6
ζ2
− 0.013 063

µ7
ζ2
+ 0.009 3146

µ8
ζ2
− 0.000 31

(
µ6
ζ2
− µ8
ζ2

)
W2

W

)
a4

5
28

(
2+ µ6

ζ2
+ 2

µ7
ζ2
− µ8
ζ2

)
−

1

(
0.019 497− 0.028 52

µ6
ζ2
+ 0.019 497

µ7
ζ2
+ 0.028 517

µ8
ζ2

)
a5

5
84

(
4+ 7

µ6
ζ2
− 4

µ7
ζ2
+ µ8
ζ2

)
+

1

(
0.007 13− 0.004 53

µ6
ζ2
− 0.013 08

µ7
ζ2
+ 0.018 359

µ8
ζ2
− 0.001 116

(
µ6
ζ2
− µ8
ζ2

)
W2

W

)
Second satellite

a1
1
35

(
5− 8

µ9
ζ3
− 9

µ10
ζ3
− 8

µ11
ζ3
− µ12

ζ3

)
−

1

(
0.009 59− 0.030 55

µ9
ζ3
− 0.041 89

µ10
ζ3
− 0.044 839

µ11
ζ3
− 0.034 591

µ12
ζ3
+ 0.000 804X

W2

W

)
a2

1
14

(
5− 4

µ9
ζ3
+ 4

µ11
ζ3
+ 5

µ12
ζ3

)
−

1

(
0.050 747− 0.022 23

(
µ9
ζ3
− µ11

ζ3

)
+ 0.050 747

µ12
ζ3

)
a3

1
15

(
5+ 2

µ9
ζ3
+ 6

µ10
ζ3
+ 2

µ11
ζ3
− 5

µ12
ζ3

)
+

1

(
0.022 698− 0.068 27

µ9
ζ3
− 0.032 084

µ10
ζ3
− 0.034 936

µ11
ζ3
− 0.006 032

µ12
ζ3
+ 0.001 25X

W2

W

)
a4

1
7

(
1+ 2

µ9
ζ3
− 2

µ11
ζ3
+ µ12

ζ3

)
+

1

(
0.031 997+ 0.002 7697

(
µ9
ζ3
− µ12

ζ3

)
+ 0.031 997

µ12
ζ3

)
a5

1
42

(
1+ 4

µ9
ζ3
+ 6

µ10
ζ3
+ 4

µ11
ζ3
− µ12

ζ3

)
+

1

(
0.005 6431+ 0.012 717

µ9
ζ3
− 0.009 8054

µ10
ζ3
− 0.015 098

µ11
ζ3
− 0.009 8098

µ12
ζ3
− 0.000 446X

W2

W

)
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µ10 = −W 2
2 (800W 2+ 200WW1+ 8W 2

1 + 220WW2+ 32W1W2+ 9W 2
2 )

µ11 = 9W 3
2 (10W + 2W1+W2)

µ12 = −9W 4
2

ζ3 = 128 000W 4+ 38 400W 3W1+ 2880W 2W 2
1 + 64WW 3

1 + 83 200W 3W2

+ 20 160W 2W1W2+ 1056WW 2
1W2+ 64

5
W 3

1W2+ 16 240W 2W 2
2

+ 2744WW1W
2
2 +

336

5
W 2

1W
2
2 + 980WW 3

2 +
392

5
W1W

3
2 + 9W 4

2 .

Figure 2 presents the magnetization recovery curves for the central transition for the
three cases I, II and III. Again, the remarks made concerning the case ofI = 1 apply also
to spin 5/2.

Table 4. Pure magnetic relaxation forI = 7/2.

Case I

Central transition First satellite Second satellite Third satellite

a1 1/42 1/42 1/42 1/42
a2 0 1/42 2/21 3/14
a3 3/22 2/33 1/66 6/11
a4 0 18/77 25/154 50/77
a5 75/182 1/546 200/273 75/182
a6 0 49/66 49/66 3/22
a7 1225/858 392/429 98/429 8/429

Case II

Central transition First satellite Second satellite Third satellite

a1 = 1, others 0

Case III

Central transition First satellite Second satellite Third satellite

a1 4/21 5/28 1/7 1/12
a2 0 5/84 4/21 1/4
a3 2/11 5/66 1/66 7/22
a4 0 27/154 15/154 5/22
a5 20/91 1/1092 80/273 5/52
a6 0 35/132 7/33 1/44
a7 175/429 35/143 7/143 1/429

6. Spin I = 7/2

If only magnetic fluctuations are present, the reduced relaxation matrix is given by

Rmag= W



−14 12 0 0 0 0 0
7 −24 15 0 0 0 0
0 12 −30 16 0 0 0
0 0 15 −32 15 0 0
0 0 0 16 −30 12 0
0 0 0 0 15 −24 7
0 0 0 0 0 12 −14


.
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The eigenvalues are

λ = −W [ 2 6 12 20 30 42 56]

and the corresponding eigenvector matrix is

E =



1 1 1 1 1 1 1
−3 −2 −1 0 1 2 3
6 1 −2 −3 −2 1 6
−10 5 6 0 −6 −5 10
15 −20 1 15 1 −20 15
−3 7 −7 0 7 −7 3
4 −14 28 −35 28 −14 4


.

The coefficientsai are given in table 4.

7. Discussion

The results of the previous sections have clearly shown that a separation of the total
relaxation into its magnetic and quadrupolar contributions is not straightforward since
the form of the relaxation law is very robust against additional contributions. We will
discuss now the ‘worst case’, namely how large a certain contribution, either magnetic or
quadrupolar, can be without being detected as a contribution to the total relaxation.

As an example, let us assume the following. (i) We ‘believe’ that a certain system
relaxes by pure magnetic fluctuations with a rateW̃ ; hence the relaxation time ‘seems to
be’ T1 = (2W̃ )−1. (ii) In reality, however, the system under consideration also has a quadru-
polar relaxation channel and therefore thereal magnetic relaxation,W , is different fromW̃ .
In other words, we are actually measuring the decay of a magnetizationM(W,W1,W2, t),
which depends onW,W1 andW2, although we ‘believe’ that the magnetization is of the form
M(W̃, 0, 0, t). We want to know how strong, compared toW , the quadrupolar relaxation
rates,W1,W2, can be without being revealed experimentally and therefore not revealing
that our assumption of ‘pure magnetic fluctuations’ is incorrect.

A measure of the deviation between the two magnetizations is provided by the following
quantity:

0m =
∫ tco

0
dt {M(W,W1,W2, t)−M(W̃, 0, 0, t)}2. (10)

We introduced a cut-off time,tco, in order to prevent an overestimation of the tail of the
magnetization decay at very large times, because usually only the first three decades of
this decay can be measured. We used a valuetco = 1/(3W) although the results are only
marginally altered if one shiftstco to even larger times.

The derivative∂0m/∂W̃ = 0 yields the ‘optimal’ valueW̃opt. In figure 3, we have
plotted, for the central line forI = 5/2, contour lines ofW̃opt/W (for the range from 1
to 1.3) in the (W1,W2) parameter space. Obviously,̃Wopt is a slowly varying function of
W1,W2. This is also true for theI = 5/2 satellites as well as for allI = 1, 3/2 lines.

Having obtainedW̃opt, we define an accuracy function:

εm =
{

1 M(W,W1,W2, t)− δM < M(W̃opt, 0, 0, t) < M(W,W1,W2, t)+ δM ∀t
0 otherwise.

Here, δM = nM(W,W1,W2, t = ∞) is the typical experimental uncertainty of the mag-
netization, wheren is the relative error.
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Figure 3. A contour plot ofW̃opt/W (case I, for values between 1 and 1.3) in the parameter
space(W1,W2) for the central line forI = 5/2.
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0.0
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1.5

2.0

2.5

3.0
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1%

2%

3%

4%

Figure 4. Regions in the(W1,W2) parameter space where the relative experimental uncertainty
of the magnetization has a certain value,n, given in per cent. Left-hand graph: the central
transition forI = 3/2; right-hand graph: the central transition forI = 5/2; both for case I.

In figure 4, we have drawn the regions in the(W1,W2) parameter space, separated by
dashed lines, wheren has a certain value. Since relative uncertainties of 7% and lower
are very often below the usual experimental errors, the regions in figure 4 correspond to
those experiments in which the case of mixed relaxation, that isW1,W2 6= 0, cannotbe
distinguished from that of ‘pure’ magnetic relaxation with a relaxation rateW̃opt. The results
of figure 4 are for the central line for spinI = 3/2 (the left-hand part) and spinI = 5/2
(the right-hand part); similar plots (not shown here) apply for spinI = 1. In the case of
spin I = 5/2, the situation is even worse, in the sense that the uncertainty region in the
(W1,W2) parameter space is much larger.

In the most general case of mixed relaxation, the concept of asingletypical timescale,T1,
breaks down and all of the transition probabilitiesW,W1,W2 must be considered according
to equation (8). Since the above analysis revealed that the recovery law is rather insensitive
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to additional relaxation channels around(W1,W2) = (0, 0), an approximation with a single
T1 = 1/W̃opt is still meaningful over an appreciable region of the parameter space(W1,W2).
This is an acceptable situation if one can allow a relatively low precision and the neglect of
details of the relaxation mechanism. The extracted ratioT1 may yield significant information
about the predominant relaxation channel, e.g. its temperature dependence.

The above treatment of a ‘presumably’ pure magnetic relaxation can be applied to the
opposite case of a ‘presumably’ purequadrupolar relaxation, i.e. we ‘believe’ that we
measure a magnetizationM(0, W̃1, W̃2, t) with W̃1, W̃2 assumed to be pure quadrupolar
relaxation rates, whereas the true magnetization is of the formM(W,W1,W2, t). Again, in
analogy to equation (10), we define a ‘measure of deviation’:

0q =
∫ tco

0
dt {M(W,W1,W2, t)−M(0, W̃1, W̃2, t)}2.

with tco as defined before.0q becomes minimal for̃W1,opt andW̃2,opt.
As above, we define an accuracy function:

εq =
{

1 M(W,W1,W2, t)− δM < M(0, W̃1,opt, W̃2,opt, t) < M(W,W1,W2, t)+ δM∀t
0 otherwise.

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

1%
2%

3%

4%

W/W2

Figure 5. Regions in the(W,W1) parameter space where the relative experimental uncertainty
of the magnetization has a valuen given in per cent. The data are forI = 3/2, the central line
transition, case I.

Figure 5 shows regions in the parameter space(W,W1), separated by dashed lines,
wheren has a certain value. The regions where the ‘pure’ quadrupolar relaxation cannot
be distinguished from the situation withW 6= 0 are even more pronounced than in the case
of almost ‘pure’ magnetic relaxation. The main reason for this is that there are two ‘free’
parameters̃W1, W̃2 to ‘compensate’ for the magnetic contribution.

So far, our discussion has shown that, in the presence of mixed relaxation, the two
contributions cannot be separated if the experimental errors are in the range 10% or
more. We thus conclude that additional information or a different procedure is needed
to demonstratequantitativelythe existence or non-existence of the non-dominant relaxation.
What possibilities do we have?
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Since the above considerations refer to asingle transition, one might suppose that a
comparison ofseveraltransitions provides an alternative. However, we noticed that this
procedure does not strongly affect the ‘uncertainty’ regions.

Another possibility is to use different initial conditions and to compare the respective
results. This is what Rega [10] proposed for special cases, although he did not choose the
correct initial conditions for case III. One determines the slope of the magnetization at time
zero:

sj (W,W1,W2) =
(

dM

dt

)j
t→0

=
∑
i

aiλi (11)

wherej labels the chosen initial condition. One then takes the ratio of two such slopes,
both expressed in a normalized form:

Rij =
(
si(W,W1,W2)

si(W, 0, 0)

)/( sj (W,W1,W2)

sj (W, 0, 0)

)
. (12)

Typical examples are shown in figure 6. ForRij = 1, mixed relaxation is indistinguishable
from pure magnetic relaxation. For an integer spin,Rij = 1 is simply given byW2 = 0
since the magnetic and the quadrupolar1m = 1 relaxation channels connect the same
energy levels (see equations (3)–(5)). On the other hand, the(1/2,−1/2) transition for a
half-integer spin is not allowed for the quadrupolar1m = 1 relaxation channel and therefore
a non-trivial result,Rij = 1, follows.

0.0 0.5 1.0 1.5
0.0

0.5

1.0

1.5

W1/W
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 1.0 
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0.5

1.0

1.5

0.8
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0.9

0.95

1.0
1.05

1.1

W1/W

Figure 6. A contour plot ofRij (see equation (12)). Left:I = 1 with i andj referring to cases
I and II, respectively. Right:I = 3/2 and the central transition withi andj referring to cases
I and III, respectively.

For spinI = 1, there is hope of separating quadrupolar from magnetic relaxation ifW2

is not too small. For half-integer spin, however, the indistinguishable regions for mixed
relaxation in the(W1,W2) space are almost the same for theRij -approach as for the fitting
of the whole time evolution of the magnetization; this can easily be seen from a comparison
of figure 4 and figure 6. Therefore, here again, in general, additional information is needed
to separate magnetic from quadrupolar contributions.

8. Summary and conclusions

We have discussed the multi-exponential nuclear magnetization recovery which occurs in
spin–lattice relaxation when NMR lines are split by quadrupole interaction. We have treated
the case of a static quadrupolar perturbed Zeeman Hamiltonian in the presence of both
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magnetic and quadrupolar fluctuations under the assumption that the spin-exchange coupling
can be omitted and that the eigenfunctions of the static Hamiltonian can be approximated
by Zeeman eigenfunctions.

The calculations were carried out for three cases differing in their initial conditions.
Case I: with the system initially in equilibrium, a short radio-frequency (RF) pulse is
applied selectively to one of the transitions (the central line or one satellite).Case II: with
the system initially in equilibrium,all of the lines are saturated at once.Case III: a selected
line (q) is saturated by continuous waves or by means of a long comb of pulses.

We have presented exact solutions for spinI = 1 and I = 3/2. For spinI = 5/2,
we found an exact solution for the case in which the quadrupolar transition probabilities
W1 andW2 are equal and an approximate solution for the general case ofW1 6= W2. Spin
I = 7/2 is treated for magnetic fluctuations only.

We found that, over a surprisingly large region of the(W,W1,W2) parameter space,
it is almost impossible, within experimental errors, to separate magnetic and quadrupolar
contributions to the relaxation. Instead, the ‘dominant’ contribution determines the time
evolution of the recovery law, i.e. the system can be approximately described using a single
time constant,T eff

1 . In other words, even if the initial assumption of the experimentalist is
wrong (let us say, the assumption of pure magnetic fluctuations is made), the extracted ratio
T1 is of the right order of magnitude.

Thus, to test any hypotheses about the origin of the spin–lattice relaxation in the system
under consideration, additional information is necessary. This may be provided by the
temperature dependence of the relaxation or by the different results obtained for different
isotopes of the element considered. If single crystals are available, the relaxation’s angular
dependence yields valuable information. Because of the different transformation behaviour
of the electric field gradient tensor,Vαβ , and the external magnetic field, a certain relaxation
channel may vanish for a given orientation. For instance, for fluctuations along the principal
axis ofVαβ , the quadrupolarW1-channel is exactly zero.
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