IOPSClence iopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

Mixed magnetic and quadrupolar relaxation in the presence of a dominant static Zeeman

Hamiltonian

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1998 J. Phys.: Condens. Matter 10 5977
(http://iopscience.iop.org/0953-8984/10/26/022)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.209
The article was downloaded on 14/05/2010 at 16:34

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/10/26
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

J. Phys.: Condens. Matt&0 (1998) 5977-5994. Printed in the UK PIl: S0953-8984(98)92228-7

Mixed magnetic and quadrupolar relaxation in the
presence of a dominant static Zeeman Hamiltonian

A Suter, M Mali, J Roos and D Brinkmann
Physik-Institut, Universit Zirich, Winterthurerstrasse 190, CH-805d@rich, Switzerland

Received 3 March 1998

Abstract. We discuss the multi-exponential nuclear magnetization recovery which occurs in
spin—lattice relaxation when NMR lines are split by quadrupole interaction. We treat the general
situation in which both magnetic and quadrupolar fluctuations are present and consider three
cases differing in their initial conditions: (1) a short radio-frequency pulse is applied selectively
to one of the transitions; (2) all lines are saturated at once; (3) a selected line is saturated by
continuous waves or by means of a long comb of pulses. Exact solutions are presented for
spin/ =1 and! = 3/2, whereas for spid = 5/2, exact solutions are given for special cases
and approximate solutions for the general case. The Bpin7/2 case is treated for magnetic
fluctuations only. The detailed analysis reveals that the form of the recovery law is surprisingly
insensitive to an additional relaxation channel, e.g. quadrupolar fluctuations in the presence of
predominantly magnetic fluctuations or vice versa.

1. Introduction

The work presented in this paper has been motivated by the feature of condensed
matter NMR experiments that quite often both magnetic and quadrupolar time-dependent
interactions are present causing spin—lattice relaxation. The question arises of whether it
is possible to deduce, directly from the experiment, the admixture of a weak contribution,
for instance due to quadrupolar interaction, to the overall relaxation. In other words, how
sensitive is the form of the magnetization recovery law to the two types of interaction?

If the nucleus under consideration has two magnetic isotopes as in the case of copper
(%3Cu and®°Cu), the admixture can be estimated from the ratio of the relaxation tifaes,
However, if the two contributions have about the same strength and the relaxation law is
multi-exponential, one may question whether the r@ji@btained is accurate. Furthermore,
is the approximation using single relaxation time meaningful or is it more appropriate to
describe the system usisgparateprobabilities for the transitions induced by magnetic and
guadrupolar fluctuations?

The literature contains mainly calculations of multi-exponential magnetization recovery
laws for the case of eithgiurely magnetic ompurely quadrupolar fluctuations, with Andrew
and Tunstall [1] being the first to treat the case of a static quadrupolar perturbed Zeeman
Hamiltonian (spinl = 3/2,5/2). These calculations were extended to higher spins [2—4]
and to the case of a static quadrupolar Hamiltonian [5-8]. MacLaugtled [9] treated
the case of a static quadrupolar Hamiltonign={ 0) with mixed fluctuations in a kind of
perturbation expansion, whereas Rega [10] presented, for this case, an exact solution in the
limit of time approaching zero.
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Since the emergence of high-temperature superconductors, extensive studies have been
concerned with the copper relaxation which is dominated by magnetic interaction and in
which, in some cases, the presence of a (small) quadrupolar contribution is suspected [11]. In
particular, special consideration has been devoted to copper NMR in small external magnetic
fields, for which the static Hamiltonian is the sum of a Zeeman term and a quadrupolar term
which are of comparable magnitude. This case, in the limit of purely magnetic fluctuations,
has been treated by Takigawaal [12] and Horvatt [13].

In this publication we will present calculations for a static quadrupolar perturbed Zeeman
Hamiltonian in the presence of mixed magnetic and quadrupolar fluctuations. These were
carried out for three cases differing in their initial conditions and for spias1, I = 3/2
and I = 5/2; spinl = 7/2 is treated for magnetic fluctuations only. Most of the
results are exact; approximate solutions were found for the general case=0f5/2.

We analyse the whole parameter space constructed from the probabilities for transitions
induced by magnetic and quadrupolar fluctuations. This is a necessity when dealing with
single crystals or partially oriented powders, since in these cases the different contributions
of the fluctuations depend on the angle that they form with the external magnetic field,
By; i.e. by changing the direction dBy, one samples another part of the parameter space.
We also investigated how sensitive the form of the recovery law for the magnetization
is to additional fluctuations (e.g. additional quadrupolar fluctuations in the presence of
predominantly magnetic fluctuations), in order to determine whether it is possible to extract
directly from the recovery law the magnetic and quadrupolar contributions.

2. Basic relations and the master equation

Our starting point is the following Hamiltonian:
Hiot = Ho + Ha(?)

where Ho = Hz + Hq describes the time-independent (or ‘static’) Hamiltonian which
comprises the Zeeman interactidtz, with the external magnetic field and the quadrupolar
interaction, Hq, with the electric field gradient (EFG) tensof{1(r) takes into account
fluctuations; it is the sum of a magnetic and a quadrupolar contribution:

H1(t) = Hmag(t) + Hquadt) 1)
where

Hmag(t) = —hynI - h(1)

eQ 2
> Vi) (D).
D k=—2

Hauad?) = ‘”(T

Here, I is the nuclear spin operatdi(r) is a fluctuating magnetic field}; (¢) is a component
of the fluctuating EFG andy (I') are spherical tensor operators [14, 15].

In equation (1), nuclear spin-exchange terms are omitted. If the quadrupolar splitting,
due toHg, is large compared to the nuclear spin-exchange coupling, the time evolution
of the spin-lattice relaxation proceeds by means of direct coupling to the lattice. Cases in
which the nuclear spin-exchange terms are important are discussed in references [1, 16].

The relaxation of the spin system towards its thermodynamic equilibrium is described
by the so-called master equation

d
g P ®=WiPQ@) — PO)}. 2
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Here, P(¢) is the population vector of the different energy levels wi{0) being the
equilibrium value. The relaxation matriXy, is, in second-order perturbation theory, given
by [14]

o 1 [ .
Woap i”h:z /_ dr expliwwsT){@[Ha(T)IB) (BIH1(0)|a)

Wa(x = - Z Waﬂ

p#a
where |o), |8) are eigenstates dffp and wy,s = ({|Hole) — (B|HolB))/h are transition

frequencies. Ensemble averages are denoted -by.

As long as the eigenfunctions 6f, can be approximated by the eigenfunctions of a
Zeeman Hamiltonian, i.64{z > Hq, the relevant relaxation matrix terms for magnetic and
guadrupolar relaxation are given as follows:

W= J(wap) (| TTIB) I + (e I |B) I}
W = D @) (@ T L+ LITIB) 2 + (@l I+ LI7|8)|)
W22 = TP (wup) (1@l (TH2IB) 12 + 1l (1 )B) ).

The Js are the spectral densities of the fluctuating fields:

)/2 [
J(w) = 7“/ dr expliot)[hy, h_]

2 poo
JAD () = (%) / dr expiot)[Via2, V_o1.2]

o0

with

[A, B] = (1/2)(A(r)B(0) + B(1)A(0))

andhy = h, xih,.

If Hz and Hq are of similar magnitude, the situation is more complicated. The case
of purely magnetic fluctuationdor ||Hz|| = [Holl, has been treated by various authors
[12, 13].

In this paper we will deal with the case in whidli; > Hq and make the additional
assumption that the spectral densities can be approximated by a single value. This means
that the inverse of the correlation time;?, of the fluctuating fields is large compared to

o]

wqp, that iswept. < 1. One then obtains
J(w) >~ J(O0) = W
T2 (@) = JE2(0) =: W1
and the resulting transition probabilities become

Wi =WU +mI —m+1) 3)
quad1 @m —1D?( —m+ 1)U +m)
= 4
Wm—)m—l Wl 21(21 _ 1)2 ( )
quad2z o U+m)I+m—1DI —m+1(I —m+2)
‘/Vm—>m—2 - W2 21 (21 _ 1)2 . (5)

Our calculations were performed in the high-temperature limit, i.ehfay; < kgT, S0

there is a further simplificationW,_,s >~ Ws_,,. Figure 1 shows sketches of the various
transition probabilities which are possible for a spin-5/2 system. We assume the spacings
between the levels to be sufficiently unequal to suppress spin-exchange transitions.
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Figure 1. Top: transitions between the spin energy levels effected by magnetic and quadrupolar
spin—lattice relaxation processes fbr= 5/2. Bottom: population differences for ttease |
experiment; see the text.

To solve the master equation, equation (2), it is convenient to introduce some
abbreviations. The population of level is P,, and we define the difference in population
between adjacent levels b, 1> = Pnt+1 — Pn; the equilibrium value of this difference
is ng = P,4+1(0) — P, (0). The deviation of the population difference from its equilibrium
value is denoted bWw,,11/2 = P,41/2 — no; the valuesn,, 1/ form the vectorlV.

Given the transition probabilities shown in figure 1, we can write down, in compact
form, the following ‘reduced’ master equation fov:

d
— N =RN 6
o (6)
whereR is the reduced relaxation coefficient matrix. The solution of equation (6) is of the
form

N =) [ENTINO], Eij expir) )
where}; andE are the eigenvalues and the eigenvector matriR ofespectively.N (0) is
the vector describing the initial condition of the spin system into which it has been brought
during a certain preparation period.

Once theN;(¢) are known, the time-dependent magnetizatit#(y), is obtained:

M(t) = M(00) [1 - a exp(tk,-)} (8)
and theq; are given by

1
a; = ——[(ENTN©O], Ej ©)
no
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where the index refers to the corresponding line which will be observed, e.g. the central
transition. Usually the irradiated line and the observed line are the same.
In the following sections we will consider three different cases of initial conditions.

Case I:with the system initially in equilibrium, a short radio-frequency (RF) pulse is
applied selectively to one of the transitions (the central line or one satellite). This type of
experiment is used in an inversion—recovery pulse sequence or for the selective saturation of
a single line. Figure 1 illustrates the population difference before (on the left) and just after
application (centre) of thé = = pulse to the central line, wheteis the angle betweeB,
and (M). On the right are shown theeviationsof the population differences from their
equilibrium values. Hence, the elements of the initial condition ved¥(0), are given as
follows: —2nq for the inverted transition angly for the others; e.g. for the inversion of the
I = 3/2 central line we haveN (0) = ng[1, —2, 1]. For this cas€) ; a; = 2, whereas in
the general case of &pulse,) ", a; = 1 — cog6).

Case II: with the system initially in equilibriumall of the lines are saturated at once.
These conditions remain the same if one suddenly applies an external magnetic field to a
system which has achieved thermal equilibrium in zero magnetic field. In both cases, the
initial vector is simply N (0) = no[—1, ..., —1].

Case lll: we assume that a selected ling (s saturated, for instance by a long comb of
pulses such that the comb lengih > 1/ min(W, W1, W) and the pulse spacing within
the comb satisfies the conditioib< t « 1/ max W, Wy, W»). In contrast to the previous
cases, the initial condition is not obtained readily; instead it must be calculated, since the
stimulating RF field causes transitions, with transition rBte between the levelg + 1/2
andg — 1/2. Thus, for calculating the initial condition vector, the rate equation (6) must
be extended in the following way:

9N = R+ S)N + noP.

dr
S is a square matrix with all elements zero excépt;, = P+, S;q = —2P. Pis a
vector with all elements zero excepl+1 = P, P, = —2P4. For dynamic equilibrium,

when dV /dr = 0, we have
N(o0) = —ng(R+S)'P.

N (o0), which becomes the initial condition vecta¥ (0) for solving equation (6), is
calculated under the assumption that > max(W, Wi, Ws).

We close this section by listing in table 1, to the best of our knowledge, all of the
references to previous calculations of spin—lattice relaxation rates based on the above
formalism. The references are summarized for given valuesgpfind +; and various
spin values.

3. Exact solutions forI =1

In this section we will present exact solutions of the reduced master equation (6) for the case
in which the eigenfunctions of the Hamiltonidt, can be approximated by the Zeeman
eigenfunctions and{; contains both magnetic and quadrupolar interactions.

The rate matrixR is obtained from equations (3)—(6):

R= Rmag+ unad

R —w -4 2 R _ —2(W1 + Wy) Wi — 2W,
mag = 2 -4 wad= 1w oW,  —2(Wi+ W) |
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Table 1. This table contains, as far as we are aware, all of the work on multi-exponential
recovery laws due to spin—lattice relaxation carried out so far. The second column indicates
whether the unperturbed Hamiltonian is a Zeeman Hamiltohéaror a quadrupole Hamiltonian

Hq or the sum of these. The third column indicates the kind of fluctuation treated and the last
column the spin for which the calculation was carried out.

Reference Ho Ha 1

[1] Hz Hmag/Hquad 3/2, 5/2
[2] Hz Hquad 7/2,9/2
[5] Ho,n=0 Hquad 5/2

[3] Hz Hmag 5/2,7/2
[9] Ho:n =0 Hmag+ Hquad 3/2,5/2
[4] Hz Hquad 3/2-9/2
[6] HQ Hquad 5/2_9/2
[7] Hq Hmag 3/2,5/2
[10] Ha Hmag+ Hquad M(*)l;—0  7/2

[12] Hz +Ho Hmag 3/2

[13] HZ + HQ Hmag 3/2

[8] Ho Hquad 7/2

Table 2. Coefficientsa; of the magnetization recovery law for spin= 1, for different cases
(see the text). For case I = Wy/(2W + W1 + 2W>).

Case | Case I Case lll

N©/no [1.-2] [-1,-1] [2e —1]
a1 3/2 0 Y2+«
a 1/2 1 Y2 -«

The eigenvaluea and the eigenvector matrix of R are, respectively,

Ao | s@w+wy e_[-1 1
| W 4+ Wy + 4Wp) SL1o1p

We now calculate the magnetization recovery laws for the three cases mentioned above.
For spinl = 1, in contrast to the other cases, there is only one recovery law for a specified
initial condition. Theg;-coefficients of equation (9) are given in table 2.

Figure 2 illustrates the results for two situations: (a) vanishing quadrupolar fluctuations,
i.e. Wy = W, = 0, and (b) strong quadrupolar fluctuations, namély= W, W, = W/2.
We note that even a strong additional quadrupolar relaxation (situation (b)) does not change
the form of the curve very much; that means that it is still possible to make all of the
curves nearly coincide if a normalized abscissa is used. This is true over a surprisingly
large proportion of the parameter spaiée Wy, W». The reason for this behaviour is that
the eigenvaluesa; are only weak and linear functions &, Wy, W,. We will discuss this
in section 7.

4. Exact solutions forI = 3/2

Like in the case for = 1, we will present exact solutions of the reduced master equation
and will consider again the three different cases discussed in the previous section.
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I=5/2, Central Line
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Figure 2. Recovery laws for the normalized magnetization= M(t)/M(c0), foranl =1
(left-hand graph) and ad = 5/2 system [17]. The maximum of the functiondm is
normalized to 1. Curves labelled ‘a’ refer W, = W» = 0, while the ‘b’ curves refer to
Wi=W, Wo=W/2.

The two terms of the reduced relaxation matix, are

6 4 0
Rmag=W|:3 -8 3}

0 4 -6
—(2W1 + Wy) 0 W,
Rquad= |: Wy — W, —2W, Wi — W, :|
W, 0 —(2Wy + Wy)

The eigenvalues and the eigenvector matribRoére, respectively

—(TW + Wi+ Wo) + B 1 (A +2Wy+6W)/(4W) 1
)\=|: —(6W + 2(Wy + Wy)) :| E:[l 0 —1:|

—(TW + Wi+ Wp) — B 1 (+2W+6W)/4w) 1

with

B =/ (W1 — Wp)2 + 6W (Wy — Wa) + 25W2.
We now calculate the magnetization recovery laws for the three cases.

4.1. Case |

The initial condition vector for inversion of the central transitionNg0) = ng[1, —2, 1].
This yields thea;-coefficients:

1

azc =
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1
az. = WWW + (W1 — W) + B)(W — (W1 — W) + B).

The corresponding values for the satellites are
-1
s = —@BW Wy — Wy) —
ax 25 (BW + (W 2)—B)
az, = 1
1
az = £(3W + (W1 — W) + B).
The limiting values (e.g. foi; > — 0) of thea; agree with the literature values for all
situations.

4.2. Case

The initial vector is nowN (0) = no[—1, —1, —1] and thea;-coefficients become, for the
central transition,

-1
are = g (W — (W1 — W) — B)(GW — (W1 — W2) + f)

- 8W§B
aze = 0
1
az. = W(W — (W1 — W) + B)(BW — (W1 — W) — B)

and for the satellites
ay = %(SW — (W — Wo) + B)
s = 0
-1
azs = %(5W — (W1 — Wy) — B).
The limiting values (e.g. foi¥; » — 0) of thea; agree with the literature values for all
situations.

4.3. Case lll

If the centralline is irradiated, we hav&V (0) = no[1, —1, w1, with w1 = Wo/(3W + Wy),
and the coefficients; become
-1
ai. = m((4 —pu)W + w1 (W1 — Wo) — w1 BY(W — W1+ Wo — B)
ay. = 0
1
az. = m((4 —pu)W + w1 (W1 — Wo) + w1 BY(W — W1 + W + B).
For the satellites, the initial condition vector W (0) = no[—1, 2, u3], where u, =
Wa(3W + 2W2)/(12W? + 14W W, + 3W2) and uz = —W2/(12W2 + 14W W, + 3W2), and
the coefficients are

1
ay = @((1 —8uz — ua)W — (1 — pua) (W1 — Wa) + (1 — us)B)

1
ap, = 5(14- “3)

-1
az, = %((1 —8uz — uza)W — (1 — uz)(Wy — Wa) — (1 — us)h).
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The remarks made concerning the casel ot 1 apply also to spin 3/2 and will be
discussed in section 7.

5. Solutions for spinI =5/2

The two terms of the reduced relaxation matix, are

-10 8 0 0 0
5 -16 9 0 0

Rmag=W | O 8 -—18 8 0
0 0 9 -16 5
0 0 0 8 —10
unad
—3AW1+ W) E(Wi4+Wo) W 0 0
1eWL— W)  —1@wi+7w) 0 W, 0
= W2 EWi—Wo)  —2W,  EZ(Wi—Wp) W2
0 10 W2 0 —i@W1+T7Wy) 2Wi— W)
0 0 SWo EWi+Wo)  —i(AW1+ Wy)

Since the exact solution of the reduced master equation, equation (6), is too complex to
provide physical insight, we expanded the eigenvalues as well as the eigenvectors around
(W1, Wy) = (0, 0) and used the exact form far, A4 only. All of the functions involved
vary weakly in the subspaa@¥,, W,) around(0, 0); hence the solution is accurate within
a few per cent as long a%,, W, < 3W. However, for the case in whicW, = W5, the
eigenvalues and eigenvectors given below reduce to the exact solution.

Within this approximation, the eigenvalues are given by

A=
[ _ <2w +0.03143W; + 0.768 57, + 0.003 889WV12‘;L/—V‘/22) —0.007 778%) ]
—(A3W + (7/5) (W1 + W2) — y)

- <12W 184w, 1 1.46W, 1 003914 E WD) 078 28"%)
—(A3W + (7/5) (W1 + W) + )

- <30W +0.9285W; + 057143V, + 0.035 249(le+sz) 0,070 498%)

with

y = {49W? + (19/25W? + (61/100) W2 — (22/25) W1 W,
+ (32/5W Wy + (17/5W Wa) /2,

The corresponding approximated eigenvector matrix is

1 1+ 94 1+ 3530 Lrgn 1
“1+iA —i-SA —EW/WA L+ EA 1

E= 1 —it it —5osA it L
“1-%A  S-EA —FZW/W)A S+ A 1

L 3tmmd Foapd itamd 1

with A = (W1 — W,)/ W. The coefficients;; are summarized in table 3.
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Table 3. Mixed relaxation for/ = 5/2. The coefficients are valid in the region where
W1, Wa < 3W. (We have used the notatiot = 1+ w12/¢3 to help with the layout.)

Case |

Central transition

First satellite

Second satellite

ai 2/354 0.007 574 2/35+ 0.0015& 2/35+40.01137A

as 0 3/28+ 0.026 102 3/7—0.079 264A

as 16/45+ 0.062 183&\ 1/20— 0.026 934 4/5—0.022874

as 0 25/28—0.01047&\ 4/7 4+ 0.066 764A

as 100/63 — 0.069 758&\ 25/28+ 0.009 728\ 1/7 + 0.024 004
Case I

Central transition

First satellite

Second satellite

ay 1+0.117A 1+ 0.0346A 1-0.161A
az 0 0 0

as —0.1093A —0.0410a 0.1640A

as 0 0 0

as —0.0085A 0.0064A —0.0026A

We will list below the initial condition vectorsN (0), together with their components,
for the cases in which the central line, the inner satellite and the outer satellite are saturated
(case llI).

(a) Central line

N(O)zno[ﬁ Ks 4 Hs ﬂ]

o' T aa
1a = —9W3
s = 45Wo(L0W + 2Wy + Wa)
¢1 = 800W? 4 200W Wy + 8W2 + 220W W + 32W, W, + OW2.
(b) Inner satellite

N@©) = no[&, _q Me m7 @]
£2 L & &
e = W2(8000W 2 4 2000W>Wq + 80W W2 + 3800W 2 W, + 720W W W, + 16W2W,
+ 440W W2 + 46W1 W3 + 9W3)
7 = —OWZ(10W 4 2W; + Wy)?
fig = OW3(1OW + 2W; + Wo)
¢ = 80000W* + 36 000W Wy + 4800W>W2 + 160W W + 8200W W2 + 46 000V W,
+ 16 800W 2 W1 Wy + 1680W W2W, + 32W2 W, + 2060W W1 W2
+ 108WZ2W2 4 530W W3 + 64W, W3 + 9w,
(c) Outer satellite

N = no[_l, Ko p10 P ﬂ_}
{3 8 f3 &3
[t = W2(8000W 3 + 2000W 2 W1 + 80W W2 -+ 3800W W, + 720W W1 W,
+ 16WZW, + 440W W2 + 46W1 W2 + OW5)
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Table 3. (Continued)

Case lll

Central transition

ax

az

as

as

as

91022 — 1652 ) + A(0.02994- 0.0351872 — 0.05230>
35 a 51 “a ‘

s L4 W5
i <3 4544 41 - 252 ) +A <0.005 73+0.064 35" +0.050 72’§1 )

10(3_Ha | 4H5) _ A(0.03567+0.028 734 — 0.00158*2
63 &1 &1 ¢1 &1

First satellite

ai

az

as

as

as

1 M7 J2%:}
14
35(8 4“2 8§2 5{2)
A (0.014 27-0.026 95@ 4 0.000 oz‘ﬂ +0.006 58“— + 0.008<@ - @) Wa )

2 &
1 (4 542 + 4kl +5“8>

28 &2

A(0.0195- 0.012 89(‘— + 0.0195%7 10.012 89’%)
1 M6 547 M8
60(2_ L ’h +5£2>

A<0‘021 396 0.015 se’g—j — 0013 OGS’“— 4 0.009 314dL — 000031 46 _ @> Wa )

&2 &2
5 Hs
(“ %t - Tz)

A (0.019 497— 0.028 52@ 10.019 497’ﬂ 10.028 517‘%)
S (gyp7he g7 M8,
84 &2 &2 4“2

<000713 000453“— 001308’L+001835di 0.00111 ’;6 %)%)

Second satellite

ai

az

as

as

as

35 {3 {3 {3 {3
A (o.oog 59— 0.03055%2 — 0.041 89L —0.044 839!L ~ 003459712 1 0.000 804(%)

i<5 ghe _gHl0 _gHi1 &),

{3 {3
1 %] M1 H12
1 Y Yot R Yad £
14 (5 {3 {3 5% {3 )
A<0.050 747— 0.022 2:(%’ - ‘%) +0.050 747“12>

1 K10 K11 g H12
15<5+2§3 6% 3 +2 3 5% 3 >+

A(0.0ZZ 698 0.068 27’% ~0.032 osdi ~0.034 93% — 0.006 032‘% 4 0.001 2% %)
1 M1l | H12
<l+2§3 Pt o >+

A (0‘031 997+ 0.002 769 ? - %) +0.031 997’“2>

1 M9 Mlo M1l M12
P gqh2r Pl
42(1+4C3 6% T4 ¢3 >+

A (0.005 6431+ 0.012 717’% ~ 0.009 8054%3 ~ 0015 09812—3 ~0.009 80985% ~0.000 446(%)
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[110 = —W2(800W? + 200W Wy + 8W?Z + 220W W, + 32W1 W, + 9W2)
(11 = OWS(L0W + 2Wy + Wa)

p12 = —9Wy

¢3 = 128 000V* + 38 400V W, + 2880W2W7 + 64W WS + 83 2003 W,

64
+ 20 160V > W1 W, + 1056W W2W, + wawz + 16 240V2°W2

336 392
+ 2744W Wi W2 + ?wazz + 980W W3 + ?Wlwg + 9w,

Figure 2 presents the magnetization recovery curves for the central transition for the
three cases I, Il and Ill. Again, the remarks made concerning the cake=df apply also
to spin 5/2.

Table 4. Pure magnetic relaxation fdr= 7/2.

Case |

Central transition  First satellite  Second satellite  Third satellite

a; 1742 1/42 1/42 1/42
ap O 1/42 2/21 3/14
az 3/22 2/33 1/66 6/11
ag O 18/77 25154 5077
as  75/182 1/546 200273 75182
as O 49/66 49/66 3/22
a7 1225858 392429 9§/429 8/429
Case I

Central transition  First satellite  Second satellite  Third satellite

ay = 1, others 0

Case lll

Central transition  First satellite  Second satellite  Third satellite

a1 4/21 5/28 17 1/12
a; 0 5/84 4/21 1/4

a3z 2/11 5/66 1/66 7/22
as 0O 27/154 15154 522
as 20/91 1/1092 80273 552
ag O 35/132 7/33 1/44
a;  175/429 35143 7/143 1/429

6. SpinI =7/2

If only magnetic fluctuations are present, the reduced relaxation matrix is given by

r—14 12 0 0 0 0 0

—-24 15 0 0 0 0

12 —-30 16 0 0 0

0 15 -32 15 0 0
0 16 -30 12 0

0 0 15 -24 7

0 0 0 12 —-14

Rmag == W

[eoNeNeNeNeRN|

[eNeNe]
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The eigenvalues are
A=-W[2 6 12 20 30 42 5p

and the corresponding eigenvector matrix is

ro1 1 1 1 1 1 17

-3 -2 -1 0 1 2 3

6 1 -2 -3 -2 1 6
E=|-10 5 6 0 -6 -5 10
15 -20 1 15 1 -20 15
-3 7 -7 0 7 -7 3
4 14 28 -35 28 -—-14 44
The coefficientsy; are given in table 4.

7. Discussion

The results of the previous sections have clearly shown that a separation of the total
relaxation into its magnetic and quadrupolar contributions is not straightforward since
the form of the relaxation law is very robust against additional contributions. We will
discuss now the ‘worst case’, nhamely how large a certain contribution, either magnetic or
qguadrupolar, can be without being detected as a contribution to the total relaxation.

As an example, let us assume the following. (i) We ‘believe’ that a certain system
relaxes by pure magnetic fluctuations with a réite hence the relaxation time ‘seems to
be’ T, = (2W)~L. (i) In reality, however, the system under consideration also has a quadru-
polar relaxation channel and therefore thal magnetic relaxationW, is different fromw.

In other words, we are actually measuring the decay of a magnetiz#tioh, Wy, Wo, t),
which depends oW, W1 and W, although we ‘believe’ that the magnetization is of the form
MW,0,0,1). We want to know how strong, compared o, the quadrupolar relaxation
rates, Wy, W, can be without being revealed experimentally and therefore not revealing
that our assumption of ‘pure magnetic fluctuations’ is incorrect.

A measure of the deviation between the two magnetizations is provided by the following
guantity:

fco ~
I'm =/ dt {M(W, Wi, Wa, 1) — M(W, 0,0, 1)} (10)
0

We introduced a cut-off timet,, in order to prevent an overestimation of the tail of the
magnetization decay at very large times, because usually only the first three decades of
this decay can be measured. We used a value 1/(3W) although the results are only
marginally altered if one shiftg, to even larger times. ~

The derivativedl'n/dW = 0O yields the ‘optimal’ valueWoy. In figure 3, we have
plotted, for the central line fof = 5/2, contour lines ofWop/ W (for the range from 1
to 1.3) in the f1, W) parameter space. Obviousl#,: is a slowly varying function of
Wi, Wo. This is also~true for thd = 5/2 satellites as well as for all =1, 3/2 lines.

Having obtainedW,, we define an accuracy function:

1 MW, Wi, Wa, t) — M < M(Wopt, 0,0,7) < M(W, Wy, Wa, t) +8M Vt

Em = .
0 otherwise.

Here,sM = nM (W, Wy, W, t = o0) is the typical experimental uncertainty of the mag-
netization, where: is the relative error.
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Figure 3. A contour plot ofVT/opt/W (case |, for values between 1 and 1.3) in the parameter
space(Wy, W) for the central line forl = 5/2.
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20k T ]

2%
10|
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Figure 4. Regions in thg W1, W») parameter space where the relative experimental uncertainty
of the magnetization has a certain value,given in per cent. Left-hand graph: the central
transition for/ = 3/2; right-hand graph: the central transition fore= 5/2; both for case I.

In figure 4, we have drawn the regions in tt;, W,) parameter space, separated by
dashed lines, where has a certain value. Since relative uncertainties of 7% and lower
are very often below the usual experimental errors, the regions in figure 4 correspond to
those experiments in which the case of mixed relaxation, tha;isW, # 0, cannotbe
distinguished from that of ‘pure’ magnetic relaxation with a relaxation Vé&g. The results
of figure 4 are for the central line for spih= 3/2 (the left-hand part) and spih=5/2
(the right-hand part); similar plots (not shown here) apply for spig 1. In the case of
spin I = 5/2, the situation is even worse, in the sense that the uncertainty region in the
(W1, Wy) parameter space is much larger.

In the most general case of mixed relaxation, the concepsiofgdetypical timescale7y,
breaks down and all of the transition probabilitiés W1, W, must be considered according
to equation (8). Since the above analysis revealed that the recovery law is rather insensitive
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to additional relaxation channels arou(idt;, W>) = (0, 0), an approximation with a single

Ty = 1/ Wog is still meaningful over an appreciable region of the parameter sgécelV,).

This is an acceptable situation if one can allow a relatively low precision and the neglect of
details of the relaxation mechanism. The extracted rEtimay yield significant information
about the predominant relaxation channel, e.g. its temperature dependence.

The above treatment of a ‘presumably’ pure magnetic relaxation can be applied to the
opposite case of a ‘presumably’ pugeiadrupolar relaxation, i.e. we ‘believe’ that we
measure a magnetizatiol (0, Wy, W,, r) with Wy, W, assumed to be pure quadrupolar
relaxation rates, whereas the true magnetization is of the MW, W1, W,, r). Again, in
analogy to equation (10), we define a ‘measure of deviation’:

feo ~ o~
Fq = / dt {M(Wa Wla WZa t) - M(os Wls W2, t)}z
0

with 7, as defined beforel’; becomes minimal oWy opr and Wa, opt.
As above, we define an accuracy function;

1 MW, Wy, W 1) — M < M(O, Wopt, Waopt. 1) < M(W, Wy, Wa, 1) + 8MVt
Eq =
a 0 otherwise.
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Figure 5. Regions in thg W, W1) parameter space where the relative experimental uncertainty

of the magnetization has a valuegiven in per cent. The data are for= 3/2, the central line
transition, case |.

Figure 5 shows regions in the parameter spéide W,), separated by dashed lines,
wheren has a certain value. The regions where the ‘pure’ quadrupolar relaxation cannot
be distinguished from the situation withi = 0 are even more pronounced than in the case
of almost ‘pure’ magnetic relaxation. The main reason for this is that there are two ‘free’
parameterd¥;, W, to ‘compensate’ for the magnetic contribution.

So far, our discussion has shown that, in the presence of mixed relaxation, the two
contributions cannot be separated if the experimental errors are in the range 10% or
more. We thus conclude that additional information or a different procedure is needed
to demonstratguantitativelythe existence or non-existence of the non-dominant relaxation.
What possibilities do we have?
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Since the above considerations refer t@iagle transition, one might suppose that a
comparison ofseveraltransitions provides an alternative. However, we noticed that this
procedure does not strongly affect the ‘uncertainty’ regions.

Another possibility is to use different initial conditions and to compare the respective
results. This is what Rega [10] proposed for special cases, although he did not choose the
correct initial conditions for case 1ll. One determines the slope of the magnetization at time
zero:

(W, Wi, Wa) dary’ > ain (11)

S ) ) =\ 5 = aj A

! ! ? dr t—0 i

where j labels the chosen initial condition. One then takes the ratio of two such slopes,
both expressed in a normalized form:

R — s5i(W, W1, Wp) /(s_,-(W,Wl,Wz) (12)
YU s(W,0,0) 5i(W,0,0) )

Typical examples are shown in figure 6. F; = 1, mixed relaxation is indistinguishable
from pure magnetic relaxation. For an integer spi, = 1 is simply given byWw, = 0
since the magnetic and the quadrupoles: = 1 relaxation channels connect the same
energy levels (see equations (3)—(5)). On the other hand it —1/2) transition for a
half-integer spin is not allowed for the quadrupafern = 1 relaxation channel and therefore
a non-trivial result,R;; = 1, follows.

15 , 15
o4 7
_os
2 05 EN
a -
= = ﬂ////,,o.ss
051 o 0e T J osl g
o 07T e oes T
R o
e n 09 ' 0
0.0 - L 0.0 bczemmr ™ L igmmmnT ) 11
0.0 05 ’\ 1.0 15 0.0 05 10 15
WiW 10 Wy /W

Figure 6. A contour plot ofR;; (see equation (12)). Leftl = 1 withi andj referring to cases
I and Il, respectively. Right/ = 3/2 and the central transition withand j referring to cases
I and Ill, respectively.

For spin/ = 1, there is hope of separating quadrupolar from magnetic relaxatidh if
is not too small. For half-integer spin, however, the indistinguishable regions for mixed
relaxation in the(W,, W») space are almost the same for tRg-approach as for the fitting
of the whole time evolution of the magnetization; this can easily be seen from a comparison
of figure 4 and figure 6. Therefore, here again, in general, additional information is needed
to separate magnetic from quadrupolar contributions.

8. Summary and conclusions

We have discussed the multi-exponential nuclear magnetization recovery which occurs in
spin—lattice relaxation when NMR lines are split by quadrupole interaction. We have treated
the case of a static quadrupolar perturbed Zeeman Hamiltonian in the presence of both
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magnetic and quadrupolar fluctuations under the assumption that the spin-exchange coupling
can be omitted and that the eigenfunctions of the static Hamiltonian can be approximated
by Zeeman eigenfunctions.

The calculations were carried out for three cases differing in their initial conditions.
Case I: with the system initially in equilibrium, a short radio-frequency (RF) pulse is
applied selectively to one of the transitions (the central line or one sateligse Il: with
the system initially in equilibriumall of the lines are saturated at ondgase lll: a selected
line (¢g) is saturated by continuous waves or by means of a long comb of pulses.

We have presented exact solutions for spia= 1 and/ = 3/2. For spinl = 5/2,
we found an exact solution for the case in which the quadrupolar transition probabilities
W1 and W, are equal and an approximate solution for the general ca®é 6 W,. Spin
I = 7/2 is treated for magnetic fluctuations only.

We found that, over a surprisingly large region of t{&, Wy, W,) parameter space,
it is almost impossible, within experimental errors, to separate magnetic and quadrupolar
contributions to the relaxation. Instead, the ‘dominant’ contribution determines the time
evolution of the recovery law, i.e. the system can be approximately described using a single
time constant,Tf“. In other words, even if the initial assumption of the experimentalist is
wrong (let us say, the assumption of pure magnetic fluctuations is made), the extracted ratio
T is of the right order of magnitude.

Thus, to test any hypotheses about the origin of the spin—lattice relaxation in the system
under consideration, additional information is necessary. This may be provided by the
temperature dependence of the relaxation or by the different results obtained for different
isotopes of the element considered. If single crystals are available, the relaxation’s angular
dependence yields valuable information. Because of the different transformation behaviour
of the electric field gradient tensov,s, and the external magnetic field, a certain relaxation
channel may vanish for a given orientation. For instance, for fluctuations along the principal
axis of V4, the quadrupolaiv;-channel is exactly zero.
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